Learn to code from scratch with the latest and greatest tools and techniques.
Enroll NowFrom Photoshop to After Effects, learn professional creative tools from the experts.
Enroll NowSnag unlimited access to 1,000+ courses for life — now just $99 with this deal!
View DealThis practical course begins with an introduction to the Python SciPy Stack and a coverage of its basic usage cases. You will then delve right into the different functionalities offered by the main modules comprising the SciPy Stack (Numpy, Scipy, and Matplotlib) and see the basics on how they can be implemented in real-life scenarios. You will see how you can make the most of the algorithms in the SciPy Stack to solve problems in linear algebra, numerical analysis, visualization, and much more, including some practical examples drawn from the field of Machine Learning. By the end of this course, you will have all the knowledge you need to take your understanding of the SciPy Stack to a new level altogether, and tackle the trickiest problems in numerical and scientific computational programming with ease and confidence.
About the Author
Sergio Rojas is currently a Full Professor of Physics at the Universidad Simón Bolívar, Venezuela. Regarding his formal studies, he earned in 1991 a B.S in Physics with Thesis on Numerical Relativity from the Universidad de Oriente, Estado Sucre, Venezuela, and then, in 1998, he earned a Ph.D. in Physics from the Physics Department of the City College of the City University of New York, where he worked on the applications of Fluid Dynamics in the flow of fluids in porous media, gaining and developing since then a vast experience in programming as an aid to scientific research via fortran77/90 and C/C++. In 2001, he also earned a Master’s degree in computational finance from The Oregon Graduate Institute of Science and Technology.
Sergio’s teaching activities involve lecturing undergraduate and graduated physics courses at his home university, Universidad Simón Bolívar, Venezuela, including a course on Monte Carlo Methods and other on Computational Finance. His research interests include physics education research, fluid flow in porous media, and the application of the theory of complex systems and statistical mechanics in Financial Engineering. More recently, Sergio has been involved in Machine Learning and its applications in Science and Engineering via the Python programming language.
Sergio’s is Co-author of the book Learning SciPy for Numerical and Scientific Computing - Second Edition (2015) [ https://github.com/rojassergio/Learning-Scipy ] and of the self-published book (in Spanish) Aprendiendo a programar en Python con mi computador: Primeros pasos rumbo a cómputos de gran escala en las Ciencias e Ingenierías, (2016) [ https://github.com/rojassergio/Aprendiendo-a-progr... ]
Packt’s mission is to help the world put software to work in new ways, through the delivery of effective learning and information services to IT professionals. Working towards that vision, it has published over 4,000 books and videos so far, providing IT professionals with the actionable knowledge they need to get the job done–whether that’s specific learning on an emerging technology or optimizing key skills in more established tools.