Numerical and Scientific Computing with SciPy

Master the capabilties of SciPy and put them to use to solve your numeric and scientific computing problems

What's Inside

The SciPy Stack is a collection of Open-Source Python libraries finding their application in many areas of technical and scientific computing. It builds on the capabilities of the NumPy array object for faster computations, and contains modules and libraries for linear algebra, signal and image processing, visualization, and much more. Accordingly, gaining a solid working knowledge on some of the basic functionality of the SciPy Stack to solve mathematical models numerically is clearly the first step before one can start using it to tackle large-scale computational projects either in the industry or in the academic world.

This practical course begins with an introduction to the Python SciPy Stack and a coverage of its basic usage cases. You will then delve right into the different functionalities offered by the main modules comprising the SciPy Stack (Numpy, Scipy, and Matplotlib) and see the basics on how they can be implemented in real-life scenarios. You will see how you can make the most of the algorithms in the SciPy Stack to solve problems in linear algebra, numerical analysis, visualization, and much more, including some practical examples drawn from the field of Machine Learning. By the end of this course, you will have all the knowledge you need to take your understanding of the SciPy Stack to a new level altogether, and tackle the trickiest problems in numerical and scientific computational programming with ease and confidence.

About the Author

Sergio Rojas is currently a Full Professor of Physics at the Universidad Simón Bolívar, Venezuela. Regarding his formal studies, he earned in 1991 a B.S in Physics with Thesis on Numerical Relativity from the Universidad de Oriente, Estado Sucre, Venezuela, and then, in 1998, he earned a Ph.D. in Physics from the Physics Department of the City College of the City University of New York, where he worked on the applications of Fluid Dynamics in the flow of fluids in porous media, gaining and developing since then a vast experience in programming as an aid to scientific research via fortran77/90 and C/C++. In 2001, he also earned a Master’s degree in computational finance from The Oregon Graduate Institute of Science and Technology.

Sergio’s teaching activities involve lecturing undergraduate and graduated physics courses at his home university, Universidad Simón Bolívar, Venezuela, including a course on Monte Carlo Methods and other on Computational Finance. His research interests include physics education research, fluid flow in porous media, and the application of the theory of complex systems and statistical mechanics in Financial Engineering. More recently, Sergio has been involved in Machine Learning and its applications in Science and Engineering via the Python programming language.
Sergio’s is Co-author of the book Learning SciPy for Numerical and Scientific Computing - Second Edition (2015) [ https://github.com/rojassergio/Learning-Scipy ] and of the self-published book (in Spanish) Aprendiendo a programar en Python con mi computador: Primeros pasos rumbo a cómputos de gran escala en las Ciencias e Ingenierías, (2016) [ https://github.com/rojassergio/Aprendiendo-a-progr... ]

Course Curriculum

This course is closed for enrollment.

45583+ Students
29 Lectures
3+ Hours of Video
Lifetime Access
24/7 Support
Instructor Rating
Packt Publishing

Packt’s mission is to help the world put software to work in new ways, through the delivery of effective learning and information services to IT professionals. Working towards that vision, it has published over 4,000 books and videos so far, providing IT professionals with the actionable knowledge they need to get the job done–whether that’s specific learning on an emerging technology or optimizing key skills in more established tools.

Popular Bundles