Learn to code from scratch with the latest and greatest tools and techniques.
Enroll NowFrom Photoshop to After Effects, learn professional creative tools from the experts.
Enroll NowSnag unlimited access to 1,000+ courses for life — now just $99 with this deal!
View DealThis course teaches you about one popular technique used in machine learning, data science and statistics: linear regression. We cover the theory from the ground up: derivation of the solution, and applications to real-world problems. We show you how one might code their own linear regression module in Python.
Linear regression is the simplest machine learning model you can learn, yet there is so much depth that you'll be returning to it for years to come. That's why it's a great introductory course if you're interested in taking your first steps in the fields of:
In the first section, I will show you how to use 1-D linear regression to prove that Moore's Law is true.
What's that you say? Moore's Law is not linear?
You are correct! I will show you how linear regression can still be applied.
In the next section, we will extend 1-D linear regression to any-dimensional linear regression - in other words, how to create a machine learning model that can learn from multiple inputs.
We will apply multi-dimensional linear regression to predicting a patient's systolic blood pressure given their age and weight.
Finally, we will discuss some practical machine learning issues that you want to be mindful of when you perform data analysis, such as generalization, overfitting, train-test splits, and so on.
This course does not require any external materials. Everything needed (Python, and some Python libraries) can be obtained for FREE.
If you are a programmer and you want to enhance your coding abilities by learning about data science, then this course is for you. If you have a technical or mathematical background, and you want to know how to apply your skills as a software engineer or "hacker", this course may be useful.
This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.
NOTES:
All the code for this course can be downloaded from my github: https://github.com/lazyprogrammer/machine_learning_examples
In the directory: linear_regression_class
Make sure you always "git pull" so you have the latest version!
HARD PREREQUISITES / KNOWLEDGE YOU ARE ASSUMED TO HAVE:
TIPS (for getting through the course):
USEFUL COURSE ORDERING:
I am a data scientist, big data engineer, and full stack software engineer.
I received my masters degree in computer engineering with a specialization in machine learning and pattern recognition.
Experience includes online advertising and digital media as both a data scientist (optimizing click and conversion rates) and big data engineer (building data processing pipelines). Some big data technologies I frequently use are Hadoop, Pig, Hive, MapReduce, and Spark.
I've created deep learning models to predict click-through rate and user behavior, as well as for image and signal processing and modeling text.
My work in recommendation systems has applied Reinforcement Learning and Collaborative Filtering, and we validated the results using A/B testing.
I have taught undergraduate and graduate students in data science, statistics, machine learning, algorithms, calculus, computer graphics, and physics for students attending universities such as Columbia University, NYU, Hunter College, and The New School.
Multiple businesses have benefitted from my web programming expertise. I do all the backend (server), frontend (HTML/JS/CSS), and operations/deployment work. Some of the technologies I've used are: Python, Ruby/Rails, PHP, Bootstrap, jQuery (Javascript), Backbone, and Angular. For storage/databases I've used MySQL, Postgres, Redis, MongoDB, and more.