Python Programming: Machine Learning, Deep Learning | Python

Python Machine Learning and Python Deep Learning with Data Analysis, Artificial Intelligence, OOP, and Python Projects

What's Inside

Hello there,

Welcome to the “Python Programming: Machine Learning, Deep Learning | Python” course.

Python, machine learning, python programming, django, ethical hacking, data analysis, python for beginners, machine learning python, python bootcamp
Python Machine Learning and Python Deep Learning with Data Analysis, Artificial Intelligence, OOP, and Python Projects

Complete hands-on deep learning tutorial with Python. Learn Machine Learning Python, go from zero to hero in Python 3

Python instructors on OAK Academy specialize in everything from software development to data analysis, and are known for their effective, friendly instruction for students of all levels.
Whether you work in machine learning or finance, or are pursuing a career in web development or data science, Python is one of the most important skills you can learn. Python's simple syntax is especially suited for desktop, web, and business applications. Python's design philosophy emphasizes readability and usability. Python was developed upon the premise that there should be only one way (and preferably one obvious way) to do things, a philosophy that has resulted in a strict level of code standardization. The core programming language is quite small and the standard library is also large. In fact, Python's large library is one of its greatest benefits, providing a variety of different tools for programmers suited for many different tasks.
Machine learning isn’t just useful for predictive texting or smartphone voice recognition. Machine learning is constantly being applied to new industries and new problems. Whether you’re a marketer, video game designer, or programmer, this course is here to help you apply machine learning to your work.
It’s hard to imagine our lives without machine learning. Predictive texting, email filtering, and virtual personal assistants like Amazon’s Alexa and the iPhone’s Siri, are all technologies that function based on machine learning algorithms and mathematical models.Python programming: machine learning deep learning | python, python programming: machine learning deep learning, machine learning python, deep learning, machine learning, deep learning python, python programming machine learning deep learning, python programming machine learning, oak academy, python

In this course, we will learn what is Deep Learning and how does it work.

This course has suitable for everybody who interested in Machine Learning and Deep Learning concepts in Data Science.

First of all, in this course, we will learn some fundamental stuff of Python and the Numpy library. These are our first steps in our Deep Learning journey. After then we take a little trip to Machine Learning Python history. Then we will arrive at our next stop. Machine Learning in Python Programming. Here we learn the machine learning concepts, machine learning a-z workflow, models and algorithms, and what is neural network concept. After then we arrive at our next stop. Artificial Neural network. And now our journey becomes an adventure. In this adventure we'll enter the Keras world then we exit the Tensorflow world. Then we'll try to understand the Convolutional Neural Network concept. But our journey won't be over. Then we will arrive at Recurrent Neural Network and LTSM. We'll take a look at them. After a while, we'll trip to the Transfer Learning concept. And then we arrive at our final destination. Projects in Python Bootcamp. Our play garden. Here we'll make some interesting machine learning models with the information we've learned along our journey.

In this course, we will start from the very beginning and go all the way to the end of "Deep Learning" with examples.

The Logic of Machine Learning such as Machine Learning models and algorithms, Gathering data, Data pre-processing, Training and testing the model etc.

Before we start this course, we will learn which environments we can be used for developing deep learning projects.

During the course you will learn:

  1. Fundamental stuff of Python and its library Numpy
  2. What is the Artificial Intelligence (Ai), Machine Learning, and Deep Learning
  3. History of Machine Learning
  4. Turing Machine and Turing Test
  5. The Logic of Machine Learning such as
    • Understanding the machine learning models
    • Machine Learning models and algorithms
    • Gathering data
    • Data pre-processing
    • Choosing the right algorithm and model
    • Training and testing the model
    • Evaluation
  6. Artificial Neural Network with these topics
    • What is ANN
    • Anatomy of NN
    • Tensor Operations
    • The Engine of NN
    • Keras
    • Tensorflow
  7. Convolutional Neural Network
  8. Recurrent Neural Network and LTSM
  9. Transfer Learning
  10. Reinforcement Learning

Finally, we will make four different projects to reinforce what we have learned.

What is machine learning?
Machine learning describes systems that make predictions using a model trained on real-world data. For example, let's say we want to build a system that can identify if a cat is in a picture. We first assemble many pictures to train our machine learning model. During this training phase, we feed pictures into the model, along with information around whether they contain a cat. While training, the model learns patterns in the images that are the most closely associated with cats. This model can then use the patterns learned during training to predict whether the new images that it's fed contain a cat. In this particular example, we might use a neural network to learn these patterns, but machine learning can be much simpler than that. Even fitting a line to a set of observed data points, and using that line to make new predictions, counts as a machine learning model.
What is machine learning used for?
Machine learning a-z is being applied to virtually every field today. That includes medical diagnoses, facial recognition, weather forecasts, image processing, and more. In any situation in which pattern recognition, prediction, and analysis are critical, machine learning can be of use. Machine learning is often a disruptive technology when applied to new industries and niches. Machine learning engineers can find new ways to apply machine learning technology to optimize and automate existing processes. With the right data, you can use machine learning technology to identify extremely complex patterns and yield highly accurate predictions.
Does Machine learning require coding?
It's possible to use machine learning data science without coding, but building new systems generally requires code. For example, Amazon’s Rekognition service allows you to upload an image via a web browser, which then identifies objects in the image. This uses a pre-trained model, with no coding required. However, developing machine learning systems involves writing some Python code to train, tune, and deploy your models. It's hard to avoid writing code to pre-process the data feeding into your model. Most of the work done by a machine learning practitioner involves cleaning the data used to train the machine. They also perform “feature engineering” to find what data to use and how to prepare it for use in a machine learning model. Tools like AutoML and SageMaker automate the tuning of models. Often only a few lines of code can train a model and make predictions from it

What is the best language for machine learning?
Python is the most used language in machine learning using python. Engineers writing machine learning systems often use Jupyter Notebooks and Python together. Jupyter Notebooks is a web application that allows experimentation by creating and sharing documents that contain live code, equations, and more. Machine learning involves trial and error to see which hyperparameters and feature engineering choices work best. It's useful to have a development environment such as Python so that you don't need to compile and package code before running it each time. Python is not the only language choice for machine learning. Tensorflow is a popular framework for developing neural networks and offers a C++ API. There is a complete machine learning framework for C# called ML. NET. Scala or Java are sometimes used with Apache Spark to build machine learning systems that ingest massive data sets.
What are the different types of machine learning?
Machine learning is generally divided between supervised machine learning and unsupervised machine learning. In supervised machine learning, we train machine learning models on labeled data. For example, an algorithm meant to detect spam might ingest thousands of email addresses labeled 'spam' or 'not spam.' That trained model could then identify new spam emails even from data it's never seen. In unsupervised learning, a machine learning model looks for patterns in unstructured data. One type of unsupervised learning is clustering. In this example, a model could identify similar movies by studying their scripts or cast, then group the movies together into genres. This unsupervised model was not trained to know which genre a movie belongs to. Rather, it learned the genres by studying the attributes of the movies themselves. There are many techniques available within.
Is Machine learning a good career?
Machine learning python is one of the fastest-growing and popular computer science careers today. Constantly growing and evolving, you can apply machine learning to a variety of industries, from shipping and fulfillment to medical sciences. Machine learning engineers work to create artificial intelligence that can better identify patterns and solve problems. The machine learning discipline frequently deals with cutting-edge, disruptive technologies. However, because it has become a popular career choice, it can also be competitive. Aspiring machine learning engineers can differentiate themselves from the competition through certifications, boot camps, code repository submissions, and hands-on experience.
What is the difference between machine learning and artifical intelligence?
Machine learning is a smaller subset of the broader spectrum of artificial intelligence. While artificial intelligence describes any "intelligent machine" that can derive information and make decisions, machine learning describes a method by which it can do so. Through machine learning, applications can derive knowledge without the user explicitly giving out the information. This is one of the first and early steps toward "true artificial intelligence" and is extremely useful for numerous practical applications. In machine learning applications, an AI is fed sets of information. It learns from these sets of information about what to expect and what to predict. But it still has limitations. A machine learning engineer must ensure that the AI is fed the right information and can use its logic to analyze that information correctly.
What skills should a machine learning engineer know?
A python machine learning engineer will need to be an extremely competent programmer with in-depth knowledge of computer science, mathematics, data science, and artificial intelligence theory. Machine learning engineers must be able to dig deep into complex applications and their programming. As with other disciplines, there are entry-level machine learning engineers and machine learning engineers with high-level expertise. Python and R are two of the most popular languages within the machine learning field.
What is python?
Machine learning python is a general-purpose, object-oriented, high-level programming language. Whether you work in artificial intelligence or finance or are pursuing a career in web development or data science, Python bootcamp is one of the most important skills you can learn. Python's simple syntax is especially suited for desktop, web, and business applications. Python's design philosophy emphasizes readability and usability. Python was developed on the premise that there should be only one way (and preferably, one obvious way) to do things, a philosophy that resulted in a strict level of code standardization. The core programming language is quite small and the standard library is also large. In fact, Python's large library is one of its greatest benefits, providing different tools for programmers suited for a variety of tasks.
Python vs. R: What is the Difference?
Python and R are two of today's most popular programming tools. When deciding between Python and R in data science , you need to think about your specific needs. On one hand, Python is relatively easy for beginners to learn, is applicable across many disciplines, has a strict syntax that will help you become a better coder, and is fast to process large datasets. On the other hand, R has over 10,000 packages for data manipulation, is capable of easily making publication-quality graphics, boasts superior capability for statistical modeling, and is more widely used in academia, healthcare, and finance.
What does it mean that Python is object-oriented?
Python is a multi-paradigm language, which means that it supports many data analysis programming approaches. Along with procedural and functional programming styles, Python also supports the object-oriented style of programming. In object-oriented programming, a developer completes a programming project by creating Python objects in code that represent objects in the actual world. These objects can contain both the data and functionality of the real-world object. To generate an object in Python you need a class. You can think of a class as a template. You create the template once, and then use the template to create as many objects as you need. Python classes have attributes to represent data and methods that add functionality. A class representing a car may have attributes like color, speed, and seats and methods like driving, steering, and stopping.
What are the limitations of Python?
Python is a widely used, general-purpose programming language, but it has some limitations. Because Python in machine learning is an interpreted, dynamically typed language, it is slow compared to a compiled, statically typed language like C. Therefore, Python is useful when speed is not that important. Python's dynamic type system also makes it use more memory than some other programming languages, so it is not suited to memory-intensive applications. The Python virtual engine that runs Python code runs single-threaded, making concurrency another limitation of the programming language. Though Python is popular for some types of game development, its higher memory and CPU usage limits its usage for high-quality 3D game development. That being said, computer hardware is getting better and better, and the speed and memory limitations of Python are getting less and less relevant.
How is Python used?
Python is a general programming language used widely across many industries and platforms. One common use of Python is scripting, which means automating tasks in the background. Many of the scripts that ship with Linux operating systems are Python scripts. Python is also a popular language for machine learning, data analytics, data visualization, and data science because its simple syntax makes it easy to quickly build real applications. You can use Python to create desktop applications. Many developers use it to write Linux desktop applications, and it is also an excellent choice for web and game development. Python web frameworks like Flask and Django are a popular choice for developing web applications. Recently, Python is also being used as a language for mobile development via the Kivy third-party library.
What jobs use Python?
Python is a popular language that is used across many industries and in many programming disciplines. DevOps engineers use Python to script website and server deployments. Web developers use Python to build web applications, usually with one of Python's popular web frameworks like Flask or Django. Data scientists and data analysts use Python to build machine learning models, generate data visualizations, and analyze big data. Financial advisors and quants (quantitative analysts) use Python to predict the market and manage money. Data journalists use Python to sort through information and create stories. Machine learning engineers use Python to develop neural networks and artificial intelligent systems.
How do I learn Python on my own?
Python has a simple syntax that makes it an excellent programming language for a beginner to learn. To learn Python on your own, you first must become familiar with the syntax. But you only need to know a little bit about Python syntax to get started writing real code; you will pick up the rest as you go. Depending on the purpose of using it, you can then find a good Python tutorial, book, or course that will teach you the programming language by building a complete application that fits your goals. If you want to develop games, then learn Python game development. If you're going to build web applications, you can find many courses that can teach you that, too.

What is data science?

We have more data than ever before. But data alone cannot tell us much about the world around us. We need to interpret the information and discover hidden patterns. This is where data science comes in. Data science uses algorithms to understand raw data. The main difference between data science and traditional data analysis is its focus on prediction. Data science seeks to find patterns in data and use those patterns to predict future data. It draws on machine learning to process large amounts of data, discover patterns, and predict trends. Data science includes preparing, analyzing, and processing data. It draws from many scientific fields, and as a science, it progresses by creating new algorithms to analyze data and validate current methods.

What does a data scientist do?

Data Scientists use machine learning to discover hidden patterns in large amounts of raw data to shed light on real problems. This requires several steps. First, they must identify a suitable problem. Next, they determine what data are needed to solve such a situation and figure out how to get the data. Once they obtain the data, they need to clean the data. The data may not be formatted correctly, it might have additional unnecessary data, it might be missing entries, or some data might be incorrect. Data Scientists must, therefore, make sure the data is clean before they analyze the data. To analyze the data, they use machine learning techniques to build models. Once they create a model, they test, refine, and finally put it into production.

What are the most popular coding languages for data science?

Python is the most popular programming language for data science. It is a universal language that has a lot of libraries available. It is also a good beginner language. R is also popular; however, it is more complex and designed for statistical analysis. It might be a good choice if you want to specialize in statistical analysis. You will want to know either Python or R and SQL. SQL is a query language designed for relational databases. Data scientists deal with large amounts of data, and they store a lot of that data in relational databases. Those are the three most-used programming languages. Other languages such as Java, C++, JavaScript, and Scala are also used, albeit less so. If you already have a background in those languages, you can explore the tools available in those languages. However, if you already know another programming language, you will likely be able to pick up Python very quickly.

How long does it take to become a data scientist?

This answer, of course, varies. The more time you devote to learning new skills, the faster you will learn. It will also depend on your starting place. If you already have a strong base in mathematics and statistics, you will have less to learn. If you have no background in statistics or advanced mathematics, you can still become a data scientist; it will just take a bit longer. Data science requires lifelong learning, so you will never really finish learning. A better question might be, "How can I gauge whether I know enough to become a data scientist?" Challenge yourself to complete data science projects using open data. The more you practice, the more you will learn, and the more confident you will become. Once you have several projects that you can point to as good examples of your skillset as a data scientist, you are ready to enter the field.

How can I learn data science on my own?

It is possible to learn data science on your own, as long as you stay focused and motivated. Luckily, there are a lot of online courses and boot camps available. Start by determining what interests you about data science. If you gravitate to visualizations, begin learning about them. Starting with something that excites you will motivate you to take that first step. If you are not sure where you want to start, try starting with learning Python. It is an excellent introduction to programming languages and will be useful as a data scientist. Begin by working through tutorials or Stackskills courses on the topic of your choice. Once you have developed a base in the skills that interest you, it can help to talk with someone in the field. Find out what skills employers are looking for and continue to learn those skills. When learning on your own, setting practical learning goals can keep you motivated.

Does data science require coding?

The jury is still out on this one. Some people believe that it is possible to become a data scientist without knowing how to code, but others disagree. A lot of algorithms have been developed and optimized in the field. You could argue that it is more important to understand how to use the algorithms than how to code them yourself. As the field grows, more platforms are available that automate much of the process. However, as it stands now, employers are primarily looking for people who can code, and you need basic programming skills. The data scientist role is continuing to evolve, so that might not be true in the future. The best advice would be to find the path that fits your skillset.

What skills should a data scientist know?

A data scientist requires many skills. They need a strong understanding of statistical analysis and mathematics, which are essential pillars of data science. A good understanding of these concepts will help you understand the basic premises of data science. Familiarity with machine learning is also important. Machine learning is a valuable tool to find patterns in large data sets. To manage large data sets, data scientists must be familiar with databases. Structured query language (SQL) is a must-have skill for data scientists. However, nonrelational databases (NoSQL) are growing in popularity, so a greater understanding of database structures is beneficial. The dominant programming language in Data Science is Python — although R is also popular. A basis in at least one of these languages is a good starting point. Finally, to communicate findings, data scientists require knowledge of visualizations. Data visualizations allow them to share complex data in an accessible manner.

Is data science a good career?

The demand for data scientists is growing. We do not just have data scientists; we have data engineers, data administrators, and analytics managers. The jobs also generally pay well. This might make you wonder if it would be a promising career for you. A better understanding of the type of work a data scientist does can help you understand if it might be the path for you. First and foremost, you must think analytically. Data science is about gaining a more in-depth understanding of info through data. Do you fact-check information and enjoy diving into the statistics? Although the actual work may be quite technical, the findings still need to be communicated. Can you explain complex findings to someone who does not have a technical background? Many data scientists work in cross-functional teams and must share their results with people with very different backgrounds. If this sounds like a great work environment, then it might be a promising career for you.

Most programmers will choose to learn the object oriented programming paradigm in a specific language. That’s why Stackskills features a host of top-rated OOP courses tailored for specific languages, like Java, C#, and Python.

Learn more about Object Oriented Programming

Object-oriented programming (OOP) is a computer programming paradigm where a software application is developed by modeling real world objects into software modules called classes. Consider a simple point of sale system that keeps record of products purchased from whole-sale dealers and the products sold to the customer. An object-oriented language would implement these requirements by creating a Product class, a Customer class, a Dealer class and an Order class. All of these classes would interact together to deliver the required functionality where each class would be concerned with storing its own data and performing its own functions. This is the basic idea of object-oriented programming or also called OOP.

What does it mean that Python is object-oriented?

Python is a multi-paradigm language, which means that it supports many programming approaches. Along with procedural and functional programming styles, Python also supports the object-oriented style of programming. In object-oriented programming, a developer completes a programming project by creating Python objects in code that represent objects in the actual world. These objects can contain both the data and functionality of the real-world object. To generate an object in Python you need a class. You can think of a class as a template. You create the template once, and then use the template to create as many objects as you need. Python classes have attributes to represent data and methods that add functionality. A class representing a car may have attributes like color, speed, and seats and methods like driving, steering, and stopping. The concept of combining data with functionality in an object is called encapsulation, a core concept in the object-oriented programming paradigm.

Why would you want to take this course?

Our answer is simple: The quality of teaching.

OAK Academy based in London is an online education company. OAK Academy gives education in the field of IT, Software, Design, development in English, Portuguese, Spanish, Turkish and a lot of different language on Stackskills platform where it has over 1000 hours of video education lessons. OAK Academy both increase its education series number by publishing new courses, and it makes students aware of all the innovations of already published courses by upgrading.

When you enroll, you will feel the OAK Academy`s seasoned developers expertise. Questions sent by students to our instructors are answered by our instructors within 48 hours at the latest.

Video and Audio Production Quality

All our videos are created/produced as high-quality video and audio to provide you the best learning experience.

You will be,

  • Seeing clearly
  • Hearing clearly
  • Moving through the course without distractions

You'll also get:

  • Lifetime Access to The Course
  • Fast & Friendly Support in the Q&A section

We offer full support, answering any questions.

If you are ready to learn “Python Programming: Machine Learning, Deep Learning | Python”

Dive in now! See you in the course!

Course Curriculum

Get started now!



Certificate Available
46007+ Students
69 Lectures
10+ Hours of Video
Lifetime Access
24/7 Support
Instructor Rating
OAK Academy

By 2024 there will be a shortage of 1 million more tech jobs than computer science grads and the skills gap is a global problem. This was our starting point. At OAK Academy, we are the tech experts have been in the sector for years and years. We are deeply rooted in the tech world. We know the tech industry. And we know the tech industry` biggest problem is “tech skills gap” and here is our solution.

At OAK Academy, we will be the bridge to between the tech industry and people who

  • -are planning a new career
  • -are thinking career transformation
  • -want career shift or reinvention,
  • -have the desire to learn new hobbies at their own pace.

Because we want to help this generation to gain the right tech skills to fill these jobs and enjoy happier, more fulfilling careers. And this is what motivates us every day.

We specialize in critical areas like mobile app development, cybersecurity, coding, game development, app monetization, and more. Thanks to our practical alignment we are able to constantly translate industry insights into the most in-demand and up-to-date courses,

OAK Academy will provide you the information and support you need to move through your journey with confidence and ease.

Our courses are for everyone. Whether you are someone who has never programmed before, or an existing programmer seeking to learn another language or even someone looking to switch careers, we are here.

OAK Academy here to transforms passionate, enthusiastic people to reach their dream job positions.

Learn right tech skills at right place!

Popular Bundles